Abstract

Ga-oxide spinel nanocrystals are wide band gap systems, which can be incorporated in a glass matrix by phase separation mechanisms. In suitable conditions, this kind of processes can give rise to transparent nanostructured glass-ceramics with UV excitation and luminescence properties potentially interesting in several technological areas. Nanophase size dispersion and volume fraction have been demonstrated to be controllable, at some extent, by suitable thermal treatments for nucleation and nano-crystallization in low-alkali gallium germanosilicate system. Here we report the results on the role of Al2O3 additions on the microstructure and optical response of the glass-ceramics fabricated in this system. Data of differential scanning calorimetry, X-ray diffraction, transmission electron microscopy, absorption and fluorescence spectroscopy show that Al2O3 addition, up to 4.5 mol%, turns out to have a considerable impact on the size and number density of precipitated nanocrystals, which are solid solutions of γ-Ga2-xAlxO3 resulting from the partial incorporation of Al3+ ions into the crystalline phase. We show that the use of Al2O3 as an additive in the composition of gallium germanosilicates facilitates glass melting and leads to glass-ceramics with significantly modified photoluminescence characteristics such as decay lifetime and integrated intensity of light emission. The possible reasons are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call