Abstract

AbstractThe corrosion performances of Mg–4Y–xAl (x = 1, 2, 3, and 4 wt%) alloys in the 3.5% NaCl electrolyte solution are investigated by electrochemical tests, weight loss measurement and corrosion morphology observation. The results indicate that corrosion modes for the alloys are localized corrosion and the filiform type of attack. With Al concentration increasing from 1 to 4 wt%, the corrosion rate of Mg–4Y–xAl alloys decreases firstly and then increases, and WA42 alloy shows the best corrosion resistance. The addition of Al element to Mg–4Y alloys leads to the formation of Al2Y and Al11Y3 intermetallic compounds and reduces the proportion of Mg24Y5 phase. Corrosion resistance of the Mg–4Y–xAl alloys mainly depends on the size and distribution of the second phases. Besides, the addition of excessive Al can greatly consumes the Y element in the matrix, thus leading to a less protective film on the alloys. The effect of the relative Volta potential changes between the second phases and α‐Mg on corrosion resistance of Mg–4Y–xAl alloys is insignificant. The main corrosion products of the Mg–4Y–xAl alloys are Mg(OH)2, Mg3(OH)5Cl·4H2O, Mg0.72Al0.28(CO3)0.15(OH)1.98(H2O)0.48, and Mg4Al2(OH)12CO3·3H2O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call