Abstract
The material of the substrate prior to the deposition of PVD coatings as well as its surface roughness and microstructure, hardness, and Young's modulus both on the surface as well as in the material matrix, and their residual stresses on the surface and in depth, have a high influence on the adhesion of the coating to the substrate. During metal forming processes, tools are exposed to high loads, which promote plastic deformation in the material of the tool and thus reduce its lifespan. In this regard, different substrate pre-treatments, allow modifying the hardness and toughness of the substrate, positively affecting the adhesion of the coating/substrate compound as well as the overall performance of the PVD coated tool.In this investigation, four different pre-treatments were performed on the hot work tool steel AISI HI I (X37CrMoV5-1). Plasma nitriding, two different heat treatments, and polishing sequences (austenitizing, quenching and double tempering) as well as a combination of these two processes (heat treatment prior plasma nitriding). Subsequently, TiAlN coatings with a 3 μm thickness were deposited onto the four differently treated substrates by means of Direct Current Magnetron Sputtering. Residual stresses of the substrate surface, before and after coating deposition were determined by means of X-ray diffraction. Additionally, residual stresses depth profiles of the steel after each pre-treatment prior to the deposition of the coatings were measured utilizing selective electropolishing of the substrate surface. To evaluate the adhesion of the TiAlN monolayers to the coatings, scratch tests and Rockwell C adhesion tests were performed on the coating/substrate compounds. The adhesion of the coatings, deposited on steel with lower residual stresses prior to the deposition and flatter residual stress gradients, was improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.