Abstract

The effects of air flow rate (FR) (FR range: 1–10 L/min) on the oxidation of NBG-18 and NBG-25 nuclear graphite grades at temperatures between 600 and 1100 °C were studied, in reference to the standard test procedure for measuring oxidation rates of nuclear graphite in air (ASTM D 7542-09). The results showed that the FR effects on oxidation rate (OR) increase with increasing temperature with negligible FR effects at 600 °C for both materials. At high temperatures (>800 °C) there appears to be a two-stage relationship between FR and OR, which corresponds to the transition between reaction rates dominated by chemical kinetics and those dominated by diffusion. The material-specific microstructure appeared strongly influences this transition. The overall OR-FR behaviours of NBG-18 were higher than NBG-25 at 600–800 °C while negligible differences in the OR-FR behaviours between the two grades were observed at 900–1100 °C. The mercury porosimetry data showed that the higher OR-FR behaviours observed in NBG-18 may partly be attributed to the differences in the pore size distribution (open porosity and cumulative pore area) between the grades, especially for the large size pores (diameter ≫ 5 × 103 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call