Abstract
The effects of air-drying temperature on the cell wall components of three sets of fresh kiwifruits at different degrees of ripening, unripe, half-ripe and ripe samples, have been evaluated. The modifications affecting the physico-chemical properties of cell wall polysaccharides were largely dependent, not only on the air-drying temperature used (from 30 °C to 90 °C), but also on the initial stage of ripening of the processed kiwifruits. Thus, whereas in comparison with the fresh fruits, dehydrated unripe and half-ripe kiwifruits maintained their overall cell wall composition better, processed ripe kiwifruits seemed to be more sensitive to cell wall degradation/solubilisation. In fact, important losses of cell wall material (CWM), mainly pectins and, also, hemicelluloses, were detected in the riper kiwifruits when these samples were dehydrated at high temperature (up to 30% CWM losses when drying was carried out at 90 °C). Heating also promoted considerable modifications of the degree of methyl-esterification (DME) of pectins. In general, an increase in the DME corresponded to an increase in the degree of ripening of the processed samples, suggesting that methylated pectins exhibited a higher resistance to the degradation/solubilisation caused by heating. All these changes in composition were clearly reflected in the solubility and functional properties (FP) of processed CWMs. Hydration properties, swelling and water retention, and, in particular, the capacity to absorb lipids, were modified after processing. In general, CWMs from processed half-ripe kiwifruits exhibited the highest FP values. Overall, the study clearly reflects the importance of taking into consideration the stage of ripening of fruits in order to determine the final quality of CWMs, and therefore, the properties of the dietary fibre (DF) which could be obtained from processed kiwifruit samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.