Abstract
This study investigated the relationship between acyl homoserine lactones (AHLs)-based quorum sensing (QS) and the properties of Anammox granular sludge at low temperatures (11-23°C). Results indicated that adding different concentrations of AHLs inhibitors reduced the content of N-hexanoyl-dl-homoserine lactone (C6-HSL) and N-octanoyl-dl-homoserinelactone (C8-HSL) in Anammox granules on different degrees at different operation temperatures, which led to the deterioration of granules stability and activity. The important role of endogenous C6-HSL and C8-HSL signals in maintaining Anammox granular sludge stability and activity in low-temperature conditions was revealed. In addition, in the process of reducing operation temperatures, another type of AHL signal (N-(3-oxooctanoyl)-l-homoserine lactone, 3OC8-HSL) was released by Anammox granules. The effects of exogenous C8-HSL on the strength, average diameter, and density of Anammox granules were closely related to the operation temperature. When the operation temperature ranged from 11°C to 16°C, the stability of granules could be significantly improved by exogenous C8-HSL. In addition, the addition of C6-HSL and 3OC8-HSL promoted the activity of Anammox granules when the operation temperatures of the reactors were 11-23°C. This study proposed a novel approach to improve the properties of Anammox granules at low temperatures from the perspective of QS. PRACTITIONER POINTS: Endogenous AHLs played an important role in maintaining the activity and stability of Anammox granules at 11-23°C. Exogenous C8-HSL improved the granules stability at the low temperature of 11-16°C. Exogenous C6-HSL or 3OC8-HSL promoted the granules activity at 11-23°C. Supply a novel way to improve the Anammox granules performance at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.