Abstract

Heterotopic ossification (HO) is a common and debilitating complication of burns, traumatic brain injuries, and musculoskeletal trauma and surgery. Although the exact mechanism of ectopic bone formation is unknown, mesenchymal stem cells (MSCs) capable of osteogenic differentiation are known to play an essential role. Interestingly, the prevalence of HO in the elderly population is low despite the high overall occurrence of musculoskeletal injury and orthopedic procedures. We hypothesized that a lower osteogenicity of MSCs would be associated with blunted HO formation in old compared with young mice. In vitro osteogenic differentiation of adipose-derived MSCs from old (18-20 months) and young (6-8 weeks) C57/BL6 mice was assessed, with or without preceding burn injury. In vivo studies were then performed using an Achilles tenotomy with concurrent burn injury HO model. HO formation was quantified using μCT scans, Raman spectroscopy, and histology. MSCs from young mice had more in vitro bone formation, upregulation of bone formation pathways, and higher activation of Smad and nuclear factor kappa B (NF-κB) signaling following burn injury. This effect was absent or blunted in cells from old mice. In young mice, burn injury significantly increased HO formation, NF-κB activation, and osteoclast activity at the tenotomy site. This blunted, reactive osteogenic response in old mice follows trends seen clinically and may be related to differences in the ability to mount acute inflammatory responses. This unique characterization of HO and MSC osteogenic differentiation following inflammatory insult establishes differences between age populations and suggests potential pathways that could be targeted in the future with therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.