Abstract

Aging alters skeletal muscle vascular geometry and control such that the dynamics of muscular blood flow (Q) and O2 delivery (Q(O2)) may be impaired across the rest-exercise transition. If, at the onset of muscle contractions, Q dynamics are slowed disproportionately to those of muscle O2 uptake (V(O2), microvascular PO2 (PO2m) would be reduced and blood-tissue O2 transfer compromised. This investigation determined the effects of aging on PO2m (a direct reflection of the Q(O2)-to-V(O2) ratio), at rest and across the rest-contractions transition in the spinotrapezius of young (approximately 6 months, n = 9) and old (>24 months, n = 10) male Fisher 344/Brown Norway hybrid rats. Phosphorescence quenching techniques were used to quantify PO2m, and test the hypothesis that, across the rest-contractions (twitch, 1 Hz; 4-6 V, 240 s) transition, aging would transiently reduce the Q(O2)-to-V(O2) ratio causing a biphasic profile in which PO2m fell below steady-state contracting values. Old rats had a lower pre-contraction baseline PO2m than young (27.1+/-1.9 versus 33.8+/-1.6 mmHg, P<0.05, respectively). In addition, in old rats PO2m demonstrated a pronounced difference between the absolute nadir and end-contracting values (2.5+/-0.9 mmHg), which was absent in young rats. In conclusion, unlike their young counterparts, old rats exhibited a transiently reduced PO2m across the rest-contractions transition that may impair blood-tissue O2 exchange and elevate the O2 deficit, thereby contributing to premature fatigue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.