Abstract

Explicit knowledge of object center of mass or CM location fails to guide anticipatory scaling of digit forces necessary for dexterous manipulation. We previously showed that allowing young adults to choose where to grasp the object entailed an ability to use arbitrary color cues about object CM location to gradually minimize object tilt across several trials. This conditional learning was achieved through accurate anticipatory modulation of digit position using the color cues. However, it remains unknown how aging affects the ability to use explicit color cues about object CM location to modulate digit placement for dexterous manipulation. We instructed healthy older and young adults to learn a manipulation task using arbitrary color cues about object CM location. Subjects were required to exert clockwise, counterclockwise, or no torque on the object according to the color cue and lift the object while minimizing its tilt. Older adults produced larger torque error during conditional learning trials, resulting in a slower rate of learning than young adults. Importantly, older adults showed impaired anticipatory modulation of digit position when information of the CM location was available via explicit color cues. The older adults also did not modulate their digit forces to compensate for this impairment. Interestingly, however, anticipatory modulation of digit position was intact in the same individuals when information of object CM location was implicitly conveyed from trial-to-trial. We discuss our findings in relation to age-dependent changes in processes and neural network essential for learning dexterous manipulation using arbitrary color cue about object property.NEW & NOTEWORTHY We studied whether older adults are able to predictively modulate digit position using arbitrary color cues indicating object center of mass location for dexterous manipulation. Older adults showed an impaired ability to modulate digit position using the color cues when compared with young adults. Interestingly, similar impairments were not found when same older individuals learned the task using implicit knowledge. Our findings suggest an age-related impairment specifically in the conditional learning mechanisms for dexterous manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.