Abstract

In this study we investigated the stability of poly(ethylene terephthalate) (PET) and polypropylene (PP) surfaces modified using three combinations of UV light and ozone: ozone only, UV light in air (producing ozone), and UV light in air supplemented by additional ozone in the incoming air. Analysis was done using X-ray photoelectron spectroscopy and dynamic contact angle measurements. Our results showed that PET film is oxidized using these treatment conditions and it changes significantly within the first week of aging and after washing with water. These changes are reflected in the decrease in the Δ(O : C) ratio and the increase in the contact angle. Conversely, PP changes very little on aging or washing. Low-molecular-weight oxidized material (LMWOM), produced on the polymer surfaces treated with UV/air or UV/air + ozone, is easily removed with water washing. On aging PET, a number of the oxidized groups at the surface disappear, seeming to migrate into the bulk. The PP, however, does not favour migration as a path to reduce the overall free energy of the system, so the oxidized groups remain at the surface. Treatment with ozone only, in the absence of UV light, is a much different modification process in terms of the mechanism and the functional groups formed on the surface. This is reflected in the aging and washing behaviour of both the PET and the PP treated with ozone only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.