Abstract

Most studies have assessed the toxicity of pristine NPs to plants without considering the likely changes that these NPs will undergo during their residence time in the soil. In this study, we assessed the effects of ZnO NPs (3, 20, and 225 mg Zn kg−1 soil) aged for a year in soil and after a previous crop on the Zn availability in soil, leaf accumulation and toxicity to green pea (Pisum sativum L.) and beet root (Beta vulgaris L). The effects were compared to bulk ZnO and ZnSO4 in two agricultural soils with different pH under greenhouse conditions. The Zn concentration in the plant leaf was 6–12-fold higher in acidic than in calcareous soil that could explain the different effects on plants caused by Zn applications depending on soil type. Thus, in acidic soil, ZnO NPs promoted ROS generation in both plant species with increases from 47% to 130%, increased the MDA content in pea up to 58 ± 8% in plant exposed to ZnSO4 at 225 mg Zn kg−1 soil and altered the ratio of photosynthetic pigments in beet between 12% and 41%, suggesting distressed chloroplast constituents. In calcareous soil, the changes seemed to be related to the supply of Zn in Zn deficient soils, whose principal effect was the 20–65% decrease of ROS levels in treated plants. The available and leaf Zn concentrations did not differ among Zn sources. Likewise, ZnO NPs showed comparable toxic or stimulatory effects to ZnO bulk and Zn salt, with some exceptions where Zn ion showed the highest phytotoxicity and effectiveness as a micronutrient. According to our results, we cannot affirm that NPs pose a higher potential environmental risk than their bulk counterparts after one-year of residence time in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call