Abstract

The present study examined the developmental course of the age-related hearing loss and its consequences on the expression of acoustic startle reflex (ASR) and prepulse inhibition (PPI) generated by white-noise bursts in 129S2/SvPas (129) and C57BL/6J (C57) mouse strains and their F 1 hybrids. Auditory brainstem responses (ABR), ASR and PPI were assessed at various time points: 6, 28, 41 and 94 weeks. Both parental strains showed marked ABR threshold shifts with age, with C57 mice having the most pronounced deficits. By contrast, the hybrids displayed only minor hearing loss with age. The time courses of ASR and PPI varied considerably between the mouse strains. From 6 to 41 weeks of age, ASR and PPI elicited by weak stimuli (70–90 dB) increased in C57 mice, whereas the startle responses to intense stimuli (95–120 dB) declined progressively. In 129 and hybrid mice, PPI levels remained relatively stable during the first year, but a progressive increase of ASR was observed in the hybrids for intense stimuli (95–120 dB). When animals reached 94 weeks of age, marked deterioration of ASR was observed in all strains, while deficits in PPI were only seen in 129 and C57 mice. These findings show that the time course and the severity of the hearing loss vary considerably between 129, C57 strains and their hybrids, thus suggesting a marked heterogeneity in the genetic mechanisms underlying deafness in mice. They also demonstrate that the age-related hearing loss may have complex consequences on auditory behavioral performances depending of the severity of the deficits, the genetic background as well as the stimuli parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call