Abstract

Previous studies of electrophysiological audiograms in gekkonomorph lizards revealed greater sensitivity in adults than in juveniles. We investigated whether this difference, as far as it is affected by the middle ear, is due to animal age or size. The velocity transfer function of the tympanic membrane (TM) was examined using laser interferometry in nine samples: adults of three large gekkonomorph species, adults of three small species (each related to one of the former), and juveniles of the large species, their sizes matching those of the small-species adults. Each transfer function exhibited an inverted 'V' or 'U' shape, with the velocity of TM motion peaking in the mid-frequency range and becoming poorer at lower and higher frequencies. Among samples, maximum TM velocity correlated with animal length, perhaps because of a damping change in the larger TM. The frequency at maximum velocity negatively correlated with measurements of TM area. Presumably, with a larger TM area, the best frequency shifted downward because of increased middle-ear mass or decreased stiffness. The bandwidth of the transfer function negatively correlated with animal length, being broader in smaller animals and sharper in larger animals. This effect can be attributed to increased mass, decreased damping, or both. Among the middle-ear morphological measurements, the one most closely correlated with body length was the length of the extracolumellar anchorage at the TM. Among the physiological variables investigated, maximum velocity was negatively correlated with the frequency at which it occurred. The dependence of these transfer function variables on animal and ear size was similar, regardless of whether the comparison was among adults of species of different sizes, or among age classes within a species, so that age differences appear to be largely the result of size differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.