Abstract

Objective. Wearable and wireless motion sensor devices have facilitated the automated computation of speed, amplitude, and rhythm of hand motion tasks. The aim of this study is to determine if there are any biological influences on these kinematic parameters. Methods. 80 healthy subjects performed hand motion tasks twice for each hand, with movements measured using a wireless motion sensor device (Kinesia, Cleveland Medical Devices Inc., Cleveland, OH). Multivariate analyses were performed with age, gender, and height added into the model. Results. Older subjects performed poorer in finger tapping (FT) speed (r = 0.593, p < 0.001), hand-grasp (HG) speed (r = 0.517, p < 0.001), and pronation-supination (PS) speed (r = 0.485, p < 0.001). Men performed better in FT rhythm (p < 0.02), HG speed (p < 0.02), HG amplitude (p < 0.02), and HG rhythm (p < 0.05). Taller subjects performed better in the speed and amplitude components of FT (p < 0.02) and HG tasks (p < 0.02). After multivariate analyses, only age and gender emerged as significant independent factors influencing the speed but not the amplitude and rhythm components of hand motion tasks. Gender exerted an independent influence only on HG speed, with better performance in men (p < 0.05). Conclusions. Age, gender, and height are not independent factors influencing the amplitude and rhythm components of hand motion tasks. The speed component is affected by age and gender differences.

Highlights

  • Finger tapping and other hand motion tasks form an integral component in the motor assessment of Parkinson’s disease (PD)

  • While there are specific descriptors to guide the rater in the clinical rating, for example, the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Movement Disorder Society-sponsored revision of the UPDRS (MDS-UPDRS) [1], the clinical rating scale is subjective and prone to interrater and even intrarater variability

  • The Kinesia scores correlated with the Modified Bradykinesia Rating Scale (MBRS) for PD and had greater test-retest reliability and sensitivity to change than conventional clinical rating scales such as the UPDRS and MBRS [6]

Read more

Summary

Introduction

Finger tapping and other hand motion tasks form an integral component in the motor assessment of Parkinson’s disease (PD). Finger tapping (FT), hand-grasp (HG), and pronationsupination (PS) movements of the hands are used to assess bradykinesia in the upper limbs [1]. Various innovations have been developed to provide a more objective and quantitative measure for bradykinesia. Technologies such as image-based motion analysis system [2], Musical Instrument Digital Interface (MIDI) system [3], and computerised motion-sensor system have been explored [4, 5]. It has been shown that these devices were more objective, reliable, and more sensitive to change than conventional clinical ratings [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call