Abstract

The objectives of this experiment were to assess effects of animal age and castration on activities of calpain I, calpain II, and calpastatin in sheep skeletal muscle. Ten newborn male lambs (2.9 kg), six weaned wethers (23.2 kg), six weaned rams (22.2 kg), six market wethers (55.4 kg), and six market rams (60.2 kg) were slaughtered and samples of biceps femoris were taken for assay of calpain I (micromolar calcium-dependent proteinase), calpain II (millimolar calcium-dependent proteinase), and calpastatin. Preweaning weight gain was similar for rams and wethers; however, postweaning ram growth exceeded (P less than .05) that of wethers. Ram biceps femoris weights at market were greater than those of wethers (P less than .05). Irrespective of age or gender, activity of calpain II was two- to threefold greater than that of calpain I. Muscle calpastatin activity was severa fold higher than calpain I and II activities. Activities of calpains and calpastatin declined (P less than .05) between birth and weaning. A portion of these losses were due to a dilution effect caused by accumulation of muscle proteins. Neonatal attenuation of calpain activities may underlie age-related attenuation of fractional rates of muscle protein degradation. Although ram muscle growth exceeded that of wethers, no differences (P greater than .05) in activities of muscle calpains or calpastatin were detected between these two groups at weaning or at market weight. Hence, castration did not influence lamb muscle growth by altering muscle calpain or calpastatin activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call