Abstract

This study follows the left ventricular (LV) hypertrophy in rats undergoing aerobic training alone (A), resistance training alone (R), or combined resistance and aerobic training (RA) (usually referred as concurrent training) program. A sedentary control group (C) was included. LV remodeling was evaluated using electron and light microscopy. The LV weight to body weight (LVW: BW) increased 11.4% in A group, 35% in the R group, and 18% in the RA group compared to the C group. The LV thickness increased 6% in the A group, 17% in the R group, and 10% in the RA group. The LV internal diameter increased 19% in the A group, 3% in the R group, and 8% in the RA group compared with the C group. The cross-sectional area of cardiomyocyte increased by 1% with the A group, 27% with R group, and 12% with RA training. The capillary density increased by 5.4% with A training, 11.0% with R training, and 7.7% with RA training compared with the C group. The volume fraction of interstitial collagen increased by 0.4% with training A, increased by 2.8% with R training, and 0.9% with RA training. In conclusion, except for the LV internal diameter, which increased more in the A group, the cardiac parameters increased more in the R group than in the other groups and in RA group than in A group. Collagen density increased from 5.4 ± 0.8% in the C group to 5.8 ± 0.6% in the A group (n. s.) (P > 0.05), to 8.2 ± 0.7% in the R group (P < 0.05), and to 6.3 ± 0.4% in the RA group (P < 0.05). These results demonstrate a significant increase for collagen content in the LV with R and RA exercise, but the increase was higher with R training alone than with RA training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.