Abstract

The purpose of the present study was to evaluate the effects of aerobic physical training (APT) on heart rate variability (HRV) and cardiorespiratory responses at peak condition and ventilatory anaerobic threshold. Ten young (Y: median = 21 years) and seven middle-aged (MA = 53 years) healthy sedentary men were studied. Dynamic exercise tests were performed on a cycloergometer using a continuous ramp protocol (12 to 20 W/min) until exhaustion. A dynamic 24-h electrocardiogram was analyzed by time (TD) (standard deviation of mean R-R intervals) and frequency domain (FD) methods. The power spectral components were expressed as absolute (a) and normalized units (nu) at low (LF) and high (HF) frequencies and as the LF/HF ratio. Control (C) condition: HRV in TD (Y: 108, MA: 96 ms; P<0.05) and FD - LFa, HFa - was significantly higher in young (1030; 2589 ms2/Hz) than in middle-aged men (357; 342 ms2/Hz) only during sleep (P<0.05); post-training effects: resting bradycardia (P<0.05) in the awake condition in both groups; VO2 increased for both groups at anaerobic threshold (P<0.05), and at peak condition only in young men; HRV in TD and FD (a and nu) was not significantly changed by training in either groups. The vagal predominance during sleep is reduced with aging. The resting bradycardia induced by short-term APT in both age groups suggests that this adaptation is much more related to intrinsic alterations in sinus node than in efferent vagal-sympathetic modulation. Furthermore, the greater alterations in VO2 than in HRV may be related to short-term APT.

Highlights

  • Heart rate variability (HRV) is mainly caused by efferent autonomic modulation of the sinus node

  • Analysis of HRV in the frequency domain obtained from mathematical processing of the R-R intervals in the electrocardiogram recordings obtained under resting conditions can discriminate two main spectral components: a high frequency one and a low frequency one, considered to be markers of parasympathetic and sympathetic control, respectively [1,2]

  • Under c.ontrol conditions, anaerobic threshold and VO2 reported as absolute oxygen uptake and normalized values for body weight were lower (P

Read more

Summary

Introduction

Heart rate variability (HRV) is mainly caused by efferent autonomic modulation of the sinus node. For many years this variable has been expressed only as mean values and standard deviations, i.e., a measure in the time domain representation. Analysis of HRV in the frequency domain obtained from mathematical processing of the R-R intervals in the electrocardiogram recordings obtained under resting conditions can discriminate two main spectral components: a high frequency one (ranging from 0.15 to 0.40 Hz) and a low frequency one (ranging from 0.04 to 0.15 Hz), considered to be markers of parasympathetic and sympathetic control, respectively [1,2]. Et al [3] have suggested that low frequency is influenced by both vagal and sympathetic activity

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call