Abstract
Reducing N2O emissions is key to controlling greenhouse gases (GHG) in wastewater treatment plants (WWTPs). Although studies have examined the effects of dissolved oxygen (DO) on N2O emissions during nitrogen removal, the precise effects of aeration rate remain unclear. This study aimed to fill this research gap by investigating the influence of dynamic aeration rates on N2O emissions in an alternating anoxic–oxic sequencing batch reactor system. The emergence of DO breakthrough points indicated that the conversion of ammonia nitrogen to nitrite and the release of N2O were nearly complete. Approximately 91.73 ± 3.35% of N2O was released between the start of aeration and the DO breakthrough point. Compared to a fixed aeration rate, dynamically adjusting the aeration rates could reduce N2O production by up to 48.6%. Structural equation modeling revealed that aeration rate and total nitrogen directly or indirectly had significant effects on the N2O production. A novel regression model was developed to estimate N2O production based on energy consumption (aeration flux), water quality (total nitrogen), and GHG emissions (N2O). This study emphasizes the potential of optimizing aeration strategies in WWTPs to significantly reduce GHG and improve environmental sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.