Abstract

To identify genes affected by advancing gestation and racial/ethnic origin in human ductus arteriosus (DA). We collected 3 sets of DA tissue (n = 93, n = 89, n = 91; total = 273 fetuses) from second trimester pregnancies. We examined four genes, with DNA polymorphisms that distribute along racial lines, to identify "Caucasian" and "non-Caucasian" DA. We used real time polymerase chain reaction to measure RNA expression of 48 candidate genes involved in functional closure of the DA, and used multivariable regression analyses to examine the relationships between advancing gestation, "non-Caucasian" race, and gene expression. Mature gestation and non-Caucasian race are significant predictors for identifying infants who will close their patent DA when treated with indomethacin. Advancing gestation consistently altered gene expression in pathways involved with oxygen-induced constriction (eg, calcium-channels, potassium-channels, and endothelin signaling), contractile protein maturation, tissue remodeling, and prostaglandin and nitric oxide signaling in all 3 tissue sets. None of the pathways involved with oxygen-induced constriction appeared to be altered in "non-Caucasian" DA. Two genes, SLCO2A1 and NOS3, (involved with prostaglandin reuptake/metabolism and nitric oxide production, respectively) were consistently decreased in "non-Caucasian" DA. Prostaglandins and nitric oxide are the most important vasodilators opposing DA closure. Indomethacin inhibits prostaglandin production, but not nitric oxide production. Because decreased SLCO2A1 and NOS3 expression can lead to increased prostaglandin and decreased nitric oxide concentrations, we speculate that prostaglandin-mediated vasodilation may play a more dominant role in maintaining the "non-Caucasian" patent DA, making it more likely to close when inhibited by indomethacin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call