Abstract

Acute kidney injury (AKI) is a critical condition for kidney and other remote organs, including the lung. However, available treatments for AKI are limited. In this study, we explored the effect of adipose-derived mesenchymal cells on a mouse model of AKI. Adipose-derived mesenchymal cells were isolated from mouse subcutaneous and peritoneal adipose tissue by digestion with collagenase type I. The left renal artery and vein of C57BL/6 mice were clamped for 45 min to induce ischemia and were injected with the adipose-derived mesenchymal cells [1 × 10(5) cells/0.2 ml phosphate-buffered saline (PBS)] or 0.2 ml PBS via the tail vein on days 0, 1, and 2. The adipose-derived mesenchymal cells had stem-cell surface markers and multilineage differentiating potentials. Administered adipose-derived mesenchymal cells homed primarily into lung. Interestingly, repeated administration of adipose-derived mesenchymal cells reduced acute tubular necrosis and interstitial macrophage infiltration in the injured kidney, accompanied with reduced cytokine and chemokine expression. Adipose-derived mesenchymal cells can be used as cell-based therapy for ischemic kidney injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call