Abstract

The effects of applying adequate vestibular stimulation to the mesencephalic locomotor region on locomotor activity in fore- and hindlimb muscles was investigated during experiments on decerebrate guinea pigs. This stimulation was produced by linear sinusoidal shifting of the animal along a vertical axis at rates of 0.08, 0.2, 0.4, and 0.8 Hz (with peak accelerations of 0.010, 0.063, 0.252, and 1.010 m·sec−2 respectively). A downwards shift was found to increase electromyographic extensor muscle activity in fore- and hindlimbs occurring during the swing phase of the locomotor cycle. An upwards movement was accompanied by the opposite changes in muscle activity. Minimum acceleration required to produce an alteration in muscle activity equaled 0.063 m·sec−2 (0.006g). These alterations were characterized by cyclical delay in relation to linear (active) acceleration. Phase lags in the activity of fore- and hindlimb extensor muscles at the rate of 0.8 Hz reached 63° and 86° respectively. Changes in flexor muscle activity ran counterphasically to these; phasic delay equalled 264° and 275° respectively. The part played by the vestibular system in control over locomotor activity in vertebrate muscles is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.