Abstract

To determine whether adenosine influences the in vitro release of nitric oxide (NO) from differentiated primary equine articular chondrocytes. Articular cartilage harvested from the metacarpophalangeal and metatarsophalangeal joints of 11 horses (3 to 11 years old) without history or clinical signs of joint disease. Chondrocytes were isolated, plated at a high density (10(5) cells/well), and treated with adenosine, the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), bradykinin, or other agents that modify secondary messenger pathways alone or in combination with bacterial lipopolysaccharide (LPS) or recombinant human interleukin-1alpha (rhIL-1alpha). Nitric oxide release was measured indirectly by use of the Griess reaction and was expressed as micromol of nitrite in the supernatant/microg of protein in the cell layer. Inducible nitric oxide synthase (iNOS) activity was determined by measuring the conversion of radiolabeled arginine to radiolabeled citrulline. Treatment of chondrocytes with adenosine alone had no significant effect on NO release. However, adenosine and NECA inhibited LPS- and rhIL-1alpha-induced NO release. This response was mimicked by forskolin, which acts to increase adenylate cyclase activity, but not by the calcium ionophore A23187 Treatment of chondrocytes with phorbol myristate acetate, which acts to increase protein kinase C activity, potentiated LPS-induced NO release. Adenosine treatment also significantly inhibited the LPS-induced increase in iNOS activity. Adenosine and the nonspecific adenosine receptor agonist NECA inhibited inflammatory mediator-induced release of NO from equine articular chondrocytes. Modulation of adenosine receptor-mediated pathways may offer novel methods for treatment of inflammation in horses with joint disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.