Abstract

ObjectivesAdenoid hypertrophy causes impaired nasopharyngeal airways (NA) ventilation. However, it is difficult to evaluate the ventilatory conditions of NA. Therefore, this study aimed to analyze the nasopharyngeal airway resistance (NARES) based on computational fluid dynamics simulations and the nasopharyngeal airway depth (NAD) and adenoid hypertrophy grade measured on cephalometric cone-beam computed tomography images and determine the relationship between NAD and grade and NARES to ultimately assess using cephalometric measurements whether NA has airway obstruction defects. MethodsCephalogram images were generated from cone-beam computed tomography data of 102 children (41 boys; mean age: 9.14 ± 1.43 years) who received orthodontic examinations at an orthodontic clinic from September 2012 to March 2023, and NAD and adenoid grade and NARES values were measured based on computational fluid dynamics analyses using a 3D NA model. Nonlinear regression analyses were used to evaluate the relationship between NARES and NAD and correlation coefficients to evaluate the relationship between grade and NARES. ResultsNARES was inversely proportional to the cube of NAD (R2 = 0.786, P < 0.001), indicating a significant relationship between these variables. The resistance NARES increased substantially when the distance NAD was less than 5 mm. However, adenoid Grade 4 (75 % hypertrophy) was widely distributed. ConclusionsThese study findings demonstrate that the ventilatory conditions of NA can be determined based on a simple evaluation of cephalogram images. An NAD of less than 5 mm on cephalometric images results in NA obstruction with substantially increased airflow resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call