Abstract

Amending biochar or MnO2 is a common strategy to regulate humification during manure composting. However, how these additives affect the formation, spectrum characteristics (UV–vis, FTIR, EEM) of humic substances (HSs) in silkworm-excrement (SE) compost and their electron transfer capacities (ETC) remains unclear. Thus, the SE composting pilot separately added with 10% corncob biochar (CB) (w/w) and 0.5% MnO2 (w/w) was run to investigate the effects. The results revealed that adding 10% CB slightly affected the HA/FA (humic acids/fulvic acids) ratios, UV–vis and FTIR spectra of the final SE-compost HSs and EEM components in the FA, but remarkably improved fulvic-like (C1)/quinone-like (C3) substances and reduced humic-like (C2)/protein-like substances (C4) in the HA. Meanwhile, 0.5% MnO2 had a noticeable positive effect on the aromatization of SE-compost FA and HA but only weak impact on SUVAs and EEM components in these HSs except C4 in the FA. Moreover, 10% CB obviously reduced EAC/EDC of FA and HA in the final SE compost by 31.1%/22.0% and 19.7%/24.0%, while MnO2 improved EDC of these HSs by 6.5%/9.1% (FA/HA). These results showed MnO2 can be used as a useful amendment to enhance the promotion effect of SE-compost HA in the soil remediation other than CB. Further investigation is suggested to focus on the effects of adding MnO2 on SE-compost HSs enhancing soil remediation and its effect on ETC derived from other manure compost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call