Abstract
Bioglasses have been developed for use in surgery because of their ability to form a hydroxy-carbonate apatite (HCA) layer on their surface which facilitates bonding to natural bone. However, they do not have sufficient strength for use in load-bearing situations and therefore improving their mechanical properties would allow their use in more robust applications. The purpose of this work was to study the effects of nitrogen addition on the physical and mechanical properties and the structure of oxynitride bioglasses based on the system Na2O–CaO–SiO2–Si3N4. The density, glass transition temperature, hardness and elastic modulus were measured and observed to increase linearly with nitrogen content. These increases are consistent with the incorporation of N into the glass structure in three-fold coordination with silicon which results in extra cross-linking of the glass network. The characterization of these oxynitride bioglasses using solid state nuclear magnetic resonance 29Si MAS NMR and infrared spectroscopy have shown firstly that all the N atoms are bonded to Si atoms and secondly that this increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q4 units with extra bridging anions at the expense of Q3 units. The oxynitride bioglasses in simulated body fluid form a hydroxy-carbonate apatite (HCA) layer on their surfaces showing that bioactivity is retained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.