Abstract

ABSTRACT Stability of beverage emulsion is measured by the rate at which the emulsion creams, flocculates or coalesces, and is generally dependent on rheology of water phase, difference in specific gravities of the two phases and droplet size/distribution of the emulsion. The effects of weighting agents (sucrose acetate isobutyrate and brominated vegetable oil) and xanthan gum on modified starch‐based emulsions were evaluated in this study. Emulsion was formed by addition of 9% coconut oil, in the presence or absence of weighting agents, into the water phase containing modified starch at 10, 12 or 14% without or with the addition of 0.3% xanthan gum. Stabilities of emulsions were evaluated both in the concentrated form used for storage and dilute form used in beverages. The addition of xanthan gum into the water phase decreased the flow behavior index (n) from 0.88 down to 0.31 and increased elastic modulus (G′) over 20 times at elevated frequency (ω = 50 rad/s) and elevated the stability of the emulsion. The xanthan gum‐added emulsion had smaller particle size and demonstrated 14 and 5 times slower phase separation compared to the emulsions without or with the addition of weighting agents, respectively. When the elastic modulus was larger than the viscous modulus (G′ > G″), the emulsions demonstrated greater stability. In dilute beverage solutions, creaming was observed in the absence of xanthan gum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call