Abstract
We investigated the effects of added phosphorus on the conversion of ethanol to propylene over ZSM-5 zeolite catalysts. We found that the activity of the catalysts was enhanced by the addition of phosphorus, and we suggest that the added phosphorus suppressed oligomerization of propylene and butene by decreasing the acidity of the active sites of the zeolites. Furthermore, the addition of phosphorus greatly enhanced the hydrothermal stability of the zeolites and thus substantially improved the catalyst durability during ethanol conversion. Carbon deposition, which was the main cause of deactivation of the phosphorus-modified zeolites, was suppressed by H2O produced by dehydration of ethanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.