Abstract

Scandium nitride (ScN) is an emerging rock salt indirect bandgap semiconductor and has attracted significant interest in recent years for thermoelectric energy conversion, as a substrate for defect-free GaN growth, as a semiconducting component in single-crystalline metal/semiconductor superlattices for thermionic energy conversion, as well as for Al1−xScxN-based bulk and surface acoustic devices for 5G technologies. Most ScN film growth traditionally utilizes physical vapor deposition techniques such as magnetron sputtering and molecular beam epitaxy, which results in stoichiometric films but with varying crystal quality, orientations, microstructures, and physical properties. As epitaxial single-crystalline ScN films with smooth surfaces are essential for device applications, it is important to understand the ScN growth modes and parameters that impact and control their microstructure. In this Letter, we demonstrate that large adatom mobility is essential to overcome the Ehrlich–Schwoebel (E–S) and grain boundary migration barriers and achieve defect (voids, dislocations, stacking faults, etc.)-free single-crystalline ScN films. Using the substrate temperature to tune adatom mobility, we show that nominally single-crystalline ScN films are achieved when the homologous temperature is higher than ∼0.3. For homologous temperatures ranging from 0.23 to 0.30, ScN films are found to exhibit significant structural voids in between pyramidal growth regions with multiple in-plane orientations resulting from additional lateral growth off the facets of the pyramids and broken epitaxy after ∼80 nm of growth. The in-depth discussion of the growth modes of ScN presented here explains its varying electrical and optical properties and will help achieve high-quality ScN for device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call