Abstract

After long-term adaptation to intermittent hypoxia, rats with an initially low resistance to acute oxygen deficiency were 2 to 4 times more resistant to it, while highly resistant rats did not show a significant change in resistance. The adaptation was accompanied by weakening of the electron-transporting function of the respiratory chain and increasing efficiency of oxidative phosphorylation in the brain mitochondria oxidizing NAD-dependent substrates, indicating that energy was produced in a more economical way. The succinate oxidase pathway of oxidation was found to be utilized to only a limited extent as a compensatory mechanism in animals exposed to intermittent hypoxia over a prolonged period. The effects of adaptation were more marked in the brain mitochondria of rats initially highly sensitive to oxygen deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.