Abstract

Background and objectivesLead (Pb) has been reported to disturb the metabolism of essential elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and zinc (Zn) in vivo. This study focused on the relationship between various dose of Pb and the essential elements. Methods50 healthy male C57BL/6 mice underwent oral administration of 0.2 mL lead acetate trihydrate solution (0, 20, 100, 500, and 1000 mg Pb/day/kg body weight) for 3 days. The concentrations of Pb and four essential elements (Ca, Zn, Fe and Mg) in the blood, kidney, liver, bone and brain were quantified with inductively coupled plasma mass spectrometry. ResultsVarious doses of Pb led to significant increases in the contents of Ca, Fe and Zn in the liver, and decreased contents of Mg and Fe in the blood in a dose-dependent pattern. The Pb dose of 20 mg/kg reduced the concentration of bone Ca, which did not continue to show an obvious decline with continued increases in the oral Pb dose. Pb also caused alterations in the Mg distribution pattern, and decreased the correlation of Mg, Ca and Zn in the brain, both findings were dose-dependent. In addition to the changes in metallomics, the related oxidative stress was exacerbated, but no significant changes were detected in hepatic and renal histopathological lesions after a short period of Pb exposure. ConclusionsThis study contributes to a thorough analysis of the Pb-poisoning mechanism, and indicates that the concentrations of essential elements could be used as sensitive toxicological indicators of Pb exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call