Abstract

PurposeAcute intermittent hypoxia (AIH) is a safe and non-invasive treatment approach that uses brief, repetitive periods of breathing reduced oxygen air alternated with normoxia. While AIH is known to affect spinal circuit excitability, the effects of AIH on cortical excitability remain largely unknown. We investigated the effects of AIH on cortical excitability within the primary motor cortex.MethodsEleven healthy, right-handed participants completed two testing sessions: (1) AIH (comprising 3 min in hypoxia [fraction of inspired oxygen ~ 10%] and 2 min in normoxia repeated over five cycles) and (2) normoxia (NOR) (equivalent duration to AIH). Single- and paired-pulse transcranial magnetic stimulations were delivered to the primary motor cortex, before and 0, 25, and 50 min after AIH and normoxia.ResultsThe mean nadir in arterial oxygen saturation was lower (p < 0.001) during the cycles of AIH (82.5 ± 4.9%) than NOR (97.8 ± 0.6%). There was no significant difference in corticospinal excitability, intracortical facilitation, or intracortical inhibition between AIH and normoxia conditions at any time point (all p > 0.05). There was no association between arterial oxygen saturation and changes in corticospinal excitability after AIH (r = 0.05, p = 0.87).ConclusionOverall, AIH did not modify either corticospinal excitability or excitability of intracortical facilitatory and inhibitory circuits within the primary motor cortex. Future research should explore whether a more severe or individualised AIH dose would induce consistent, measurable changes in corticospinal excitability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.