Abstract

We evaluated effects of calorie restriction (CR: consuming 60-65% of ad libitum [AL] intake) initiated late-in-life with or without acute exercise on insulin-stimulated glucose uptake (ISGU) of skeletal muscle by studying four groups of 26-month-old rats: sedentary-AL, sedentary-CR (8-week duration), 3 hours post-exercise (3hPEX)-AL and 3hPEX-CR. ISGU was determined in isolated epitrochlearis muscles incubated ± insulin. Muscles were assessed for signaling proteins (immunoblotting) and lipids (mass spectrometry). ISGU from sedentary-CR and 3hPEX-AL exceeded sedentary-AL; 3hPEX-CR exceeded all other groups. Akt (Ser473, Thr308) and Akt substrate of 160 kDa (AS160; Ser588, Thr642, Ser704) phosphorylation levels tracked with ISGU. Among the 477 lipids detected, 114 were altered by CR (including reductions in 15 of 25 acylcarnitines), and 27 were altered by exercise (including reductions in 18 of 22 lysophosphatidylcholines) with only six lipids overlapping between CR and exercise. ISGU significantly correlated with 23 lipids, including: acylcarnitine 20:1 (r = .683), lysophosphatidylethanolamine19:0 (r = -.662), acylcarnitine 24:0 (r = .611), and plasmenyl-phosphatidylethanolamine 37:5 (r = -.603). Muscle levels of ceramides (a lipid class previously linked to insulin resistance) were not altered by CR and/or exercise nor significantly correlated with ISGU, implicating other mechanisms (which potentially involve other lipids identified in this study) for greater ISGU and Akt and AS160 phosphorylation with these interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.