Abstract

Beetroot juice (BRJ) is high in inorganic nitrate (NO3) which has been shown to enhance vascular function, cognition, and physical performance. Acute BRJ supplementation has been reported to enhance explosive resistance exercise performance and simple reaction time in diseased populations. However, it remains unknown if acute BRJ supplementation can enhance agility and reactive drills in healthy individuals, which are relevant to many sports. The purpose of this study was to investigate the effects of acute BRJ supplementation on simple reaction time and reactive agility performance. In a counterbalanced double-blinded manner, physically active males completed two trials each with a differing single-dose treatment: (1) Placebo (PL), (2) BRJ. Each treatment was consumed 2-hrs before experimental testing. Plasma Nitrate (NO3) and Nitrite (NO2) were measured via capillary blood sampling and colorimetric assay. Reaction time was assessed using a simple reaction time light test. Reactive agility was measured via a semi-circle drill and a get-up-and-go drill. All tests used FITLIGHT LED sensors to record response time. Each visit was separated by a 72-h washout period. Acute BRJ ingestion resulted in significantly greater plasma NO3 (p < 0.001) and NO2 (p = 0.008) compared to PL. BRJ significantly improved response time during the semi-circle drill (p = 0.011) and get-up and go drill (p = 0.027) compared to PL. No differences between treatments were observed for simple reaction time (p = 0.279). Collectively, these findings suggest that acute BRJ ingestion may improve reactive agility performance likely mediated by systemic increases in NO3/NO2. Future research is needed to investigate how these findings translate to game-play and sports competition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.