Abstract
The present study was undertaken to compare the acute and long-term effects of escitalopram and citalopram on rat brain 5-HT neurotransmission, using electrophysiological techniques. In hippocampus, after 2 weeks of treatment with escitalopram (10 mg/kg/day, s.c.) or citalopram (20 mg/kg/day, s.c.), the administration of the selective 5-HT(1A) receptor antagonist WAY-100,635 (20-100 microg/kg, i.v.) dose-dependently induced a similar increase in the firing activity of dorsal hippocampus CA(3) pyramidal neurons, thus revealing direct functional evidence of an enhanced tonic activation of postsynaptic 5-HT(1A) receptors. In dorsal raphe nucleus, escitalopram was four times more potent than citalopram in suppressing the firing activity of presumed 5-HT neurons (ED(50)=58 and 254 mug/kg, i.v., respectively). Interestingly, the suppressant effect of escitalopram (100 microg/kg, i.v.) was significantly prevented, but not reversed by R-citalopram (250 microg/kg, i.v.). Sustained administration of escitalopram and citalopram significantly decreased the spontaneous firing activity of presumed 5-HT neurons. This firing activity returned to control rate after 2 weeks in rats treated with escitalopram, but only after 3 weeks using citalopram, and was associated with a desensitization of somatodendritic 5-HT(1A) autoreceptors. These results suggest that the time course of the gradual return of presumed 5-HT neuronal firing activity, which was reported to account for the delayed effect of SSRI on 5-HT transmission, is congruent with the earlier onset of action of escitalopram vs citalopram in validated animal models of depression and anxiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.