Abstract
The aim of the present study was to assess the acute motility effects and desensitizing activity of the stable ATP analogue and P(2X) purinoceptor agonist alpha,beta-methylene ATP (alpha,beta-meATP) and the effect of alpha,beta-meATP desensitization on nerve-mediated cholinergic responses in the guinea-pig ileum in vitro. It was confirmed that alpha,beta-meATP (1-30 microM) causes neurally-mediated, cholinergic (tetrodotoxin- and atropine-sensitive) longitudinal contractions. These responses were not influenced by the ganglionic blocking drug hexamethonium (50 microM), or a combination of the adrenergic neurone blocking drug guanethidine (3 microM), the opioid receptor antagonist naloxone (0.5 microM) and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 100 microM), but were strongly reduced or abolished by the P2 purinoceptor antagonist PPADS (30 microM) or by tachyphylaxis evoked by 10 microM alpha,beta-meATP. The contractile effect of alpha,beta-meATP (3 microM) was moderately inhibited by 10 microM and strongly suppressed by 30 microM of NF 279, an antagonist predominantly affecting P2X1 purinoceptors, but left uninfluenced by the P2X(5,7) receptor antagonist Brilliant blue G. No relaxant effect of alpha,beta-meATP was detected in the concentration range of 1-30 microM. Tachyphylaxis to alpha,beta-meATP (1-10 microM) caused a moderate inhibition of the cholinergic (atropine-sensitive) contractile response of the ileum to electrical field stimulation (5 Hz for 5 sec.). This reduction was unaltered in the presence of guanethidine, naloxone and L-NOARG. Responses to nicotine (1 or 2 microM) were not reduced by alpha,beta-meATP tachyphylaxis. It is suggested that alpha,beta-meATP-sensitive P(2X) purinoceptors are involved in the prejunctional modulation of cholinergic neurotransmission between the myenteric plexus and longitudinal smooth muscle in the guinea-pig small intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Basic & Clinical Pharmacology & Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.