Abstract

The effect of thermal annealing on photovoltaic devices comprising poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) with thicknesses up to 1200 nm was investigated. Without thermal annealing, the efficiency of the as-prepared devices decreased with increasing active layer thickness, reflecting largely a reduction in the short-circuit current density and an inverse photocurrent spectral response. Thermal annealing of the full devices was found to substantially recover thick-film device efficiencies while reducing the thin-film device efficiencies. The profound variations in photovoltaic characteristics were interpreted in terms of vertical phase separation in the P3HT:PCBM blend film and Li+ diffusion from the LiF/Al contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.