Abstract

Polymer translocation in complex environments is crucially important to many biological processes in life. In the present work, we adopted two-dimensional Langevin dynamics simulations to study the forced and unbiased polymer translocation dynamics in active and crowded media. The translocation time and probability are analyzed in terms of active force Fa, volume fraction φ and also the crowder size. The non-trivial active crowder size effect and activity-crowding coupling effect as well as the novel mechanism of unbiased translocation between two active environments with different active particle sizes are clarified. Firstly, for forced translocation, we reveal an intriguing non-monotonic dependence of the translocation time on the crowder size in the case of large activity. In particular, crowders of intermediate size similar to the polymer segment are proven to be the most favorable for translocation. Moreover, a facilitation-inhibition crossover of the translocation time with increasing volume fraction is observed, indicating a crucial activity-crowding coupling effect. Secondly, for unbiased translocation driven by different active crowder sizes, the translocation probability demonstrates a novel turnover phenomenon, implying the appearance of an opposite directional preference as the active force exceeds a critical value. The translocation time in both directions decreases monotonically with the active force. The asymmetric activity effect together with the entropic driving scenario provides a reasonable picture for the peculiar behavior observed in unbiased translocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call