Abstract
The sperm plasma membrane is a multifunctional organelle essential to fertilization. However, assisted reproduction techniques often negatively affect this structure, resulting in reduced fertility. These reductions have been attributed to plasma membrane damage in a wide array of species, including fish. Considerable research has been conducted on the fish sperm membrane, but few have examined the effect of cryopreservation and other assisted reproduction techniques (ARTs) on not only membrane composition, but also specific characteristics (e.g., fluidity) and organization (e.g., lipid rafts). Herein, we determined the effects of three ARTs (testicular harvest, strip spawning, and cryopreservation) on the sperm plasma membrane, using Sauger (Sander canadensis) sperm as a model. To this end, a combination of fluorescent dyes (e.g., merocyanine 540, filipin III, cholera toxin subunit β), liquid chromatography – mass spectroscopy (LC-MS) analysis of membrane lipids, and membrane ultracentrifugation coupled with plate assays and immunofluorescence were used to describe and compare sperm fluidity, membrane composition, as well as lipid raft composition and distribution among sperm types. Stripped sperm became more fluid following motility activation (40% increase in highly fluid cells characterized by a 2 × increase in fluorescence) and contained lipid rafts restricted to the midpiece. Testicular harvest yielded sperm with characteristics similar to stripped sperm. By contrast, cryopreservation impacted every aspect of membrane physiology. Two cell populations, one highly fluid and the other rigid, resulted from the freeze-thaw process. Cryopreservation reduced lipid raft cholesterol content by 44% and flotilin-2 (a lipid raft marker) was partially displaced owing to a decrease in buoyancy. Unlike stripped and testicular sperm, LC-MS analysis revealed increases in oxidative damage markers, membrane destabilization, and apoptotic signaling in cryopreserved sperm. Ultrastructural analysis also revealed widespread physical damage to the membrane following freeze-thaw. Sperm motility, however, was unrelated to any measure of membrane physiology used in this study. Our results demonstrate that ARTs have the potential to substantially affect the sperm plasma membrane, but not always detrimentally. These results provide multiple potential biomarkers of sperm quality as well as insight into sources of sub-fertility resulting from use of ARTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.