Abstract

Since accumulation of both H(+) and extracellular K(+) have been implicated in the reduction in dynamic contractile function during intense exercise, we investigated the effects of acidification and high K(+) on muscle power and the force-velocity relation in non-fatigued rat soleus muscles. Contractions were elicited by supramaximal electrical stimulation at 60 Hz. Force-velocity (FV) curves were obtained by fitting data on force and shortening velocity at different loads to the Hill equation. Acidification of the muscles by incubation with up to 24 mm lactic acid produced no significant changes in maximal power (P(max)) at 30 °C. More pronounced acidification, obtained by increasing CO(2) levels in the equilibration gas from 5% to 53%, markedly decreased P(max) and maximal isometric force (F(max)), increased the curvature of the FV relation, but left maximal shortening velocity (V(max)) unchanged. Increase of extracellular K(+) from 4 to 10 mm caused a depression of 58% in P(max) and 52% in F(max), but had no significant effect on V(max) or curvature of the FV curve. When muscles at 10 mM K(+) were acidified by 20 mm lactic acid, P(max) and F(max) recovered completely to the initial control level at 4 mm K(+). CO(2) acidification also induced significant recovery of dynamic contractions, but not entirely to control levels. These results demonstrate that in non-fatigued muscles severe acidification can be detrimental to dynamic contractile function, but in muscles depolarised by exposure to high extracellular [K(+)], approaching the [K(+)] level seen during intense fatiguing exercise, acidification can have positive protective effects on dynamic muscle function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.