Abstract

The effects of acid (HNO3) on drift and survival of benthic invertebrate communities were assessed in stream microcosms over a 7-day exposure period. Communities were obtained from the Cache la Poudre River, Colorado, using artificial substrates colonized in the stream for 30 days and then transferred to stream microcosms. Streams receiving the highest acid concentration (pH 4.0) contained significantly fewer individuals ( F = 378.42, p < 0.0001) and taxa ( F = 7.8, p = 0.0123) at the end of the experiment compared to the other two treatments (pH 5.5, 6.5) and the control (pH 7.4). Reduced macroinvertebrate abundance resulted primarily from reduced abundance of mayflies (Ephemeroptera) which were particularly sensitive. Comparisons of Plecoptera, Trichoptera, and Diptera abundances showed no statistically significant differences among treatments. Analysis of invertebrate drift samples, collected after 2, 6, 18, and 42 h exposure, revealed that percent drift in the most acidic streams was nine times that of control streams. Ephemeroptera was the only aquatic insect order to exhibit a significant drift response, and timing and magnitude of responses varied among mayfly taxa. Differences in sensitivity to acid among aquatic insect orders observed in our experimental streams were similar to those reported from field studies in other regions. Effects of acid on drift and survival of benthic invertebrate communities were also similar to effects of heavy metals, one of the primary water quality concerns in the Rocky Mountain region. These results suggest a general pattern of responses to chemical stressors in benthic communities from Rocky Mountain streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call