Abstract

Radiolabeled phytoplankton and macrophyte lignocelluloses were incubated at pHs 4 and 7 in water from a naturally acidic freshwater wetland (Okefenokee Swamp; ambient pH, 3.8 to 4.2), a freshwater reservoir (L-Lake; pH 6.7 to 7.2), and a marine marsh (Sapelo Island; pH approximately 7.8). The data suggest that acidity is an important factor in explaining the lower decomposition rates of algae in Okefenokee Swamp water relative to L-Lake or Sapelo Island water. The decomposition of algal substrate was less sensitive to low pH ( approximately 5 to 35% inhibition) than was the decomposition of lignocellulose ( approximately 30 to 70% inhibition). These substrate-dependent differences were greater and more consistent in salt marsh than in L-lake incubations. In both freshwater sites, the extent to which decomposition was suppressed by acidity was greater for green algal substrate than for mixed diatom or blue-green algal (cyanobacteria) substrates. The use of different bases to adjust pH or incubation in a defined saltwater medium had no significant effect on substrate-dependent differences. Although pH differences with lignocellulose were larger in marine incubations, amendment of lakewater with marine bacteria or with calcium, known to stabilize exoenzymes in soils, did not magnify the sensitivity of decomposition to acid stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.