Abstract
The effects of AC/DC electric fields on stretching DNA molecules were discussed in this work. In the experiments of stretching DNA molecules with AC/DC electric fields, the voltage range was changed from 0[Formula: see text]V to 10[Formula: see text]V, and the frequency of AC electric field was kept at 50[Formula: see text]kHz. An atomic force microscope (AFM) was used to obtain DNA distributions under different electric fields. DNA molecules were curved and randomly distributed in solution if there was not any force applied to them. When an AC electric field was applied to the DNA sample, the curvature of DNA molecules was decreased gradually, and the stretching result was more obvious with the increase of voltage from 0.1[Formula: see text]V to 5[Formula: see text]V. The DNA molecules were broken when the voltage was increased to 6[Formula: see text]V. However, under the DC electric field, the stretching result of DNA molecules reached to their optimum state when the voltage was 2[Formula: see text]V, and they kept their steady state even though larger electric field intensities applied to the electrodes. The results can be used for the study of DNA–DNA, protein–DNA and quantum dot–DNA interactions and for the exploration of DNA biophysical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.