Abstract

Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

Highlights

  • Salvia miltiorrhiza Bunge (Danshen in Chinese) is a very useful traditional Chinese medicine in treatment of myocardial infraction, angina pectoris, heart diseases, stroke, alzheimer’s disease, cardiovascular and cerebrovascular diseases [1]

  • Previous studies showed that accumulations of phenolic acids in plants were affected by Abscisic acid (ABA), gibberellic acid 3 (GA3) and ethylene [12,19]

  • Our previous work suggested that activities of Phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT) as well as accumulations of caffeic acid (CA), rosmarinic acid (RA) and salvianolic acid B (SAB) were significantly improved by ABA treatment [8]

Read more

Summary

Introduction

Salvia miltiorrhiza Bunge (Danshen in Chinese) is a very useful traditional Chinese medicine in treatment of myocardial infraction, angina pectoris, heart diseases, stroke, alzheimer’s disease, cardiovascular and cerebrovascular diseases [1]. Demands of Salvia miltiorrhiza in China are more 4, 000, 000 kilograms, which needs 160 km cultivated land to produce. Improvement of Salvia miltiorrhiza quality or industrialization of active ingredients production is very important to save cultivated land. There are two major groups of active ingredients in S. miltiorrhiza, tanshinones and phenolic acids. These years, more and more attentions have been paid to phenolic acids in S. miltiorrhiza roots because of their excellent effects on heart disease [2]. Various elicitors have been investigated to stimulate phenolic production in S. miltiorrhiza hairy roots,including yeast extracts, Ag+, methyl jasmonate, salicylic acid and abscisic acid [3]. Our knowledge about the regulation mechanism of phenolic biosynthesis in S. miltiorrhiza is far from complete

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call