Abstract

BackgroundVertebrobasilar dolichoectasia is a rare cerebrovascular disease characterized by obvious extension, dilation and tortuosity of vertebrobasilar artery, and its pathophysiological mechanism is not clear. This study focused on local hemodynamic changes in basilar arteries with typical vertebrobasilar dolichoectasia, together with unbalanced vertebral arteries and abnormal structures of the circle of Willis, through multi-scale modeling. MethodsThree-dimensional models of 3 types of vertebrobasilar arteries were constructed from magnetic resonance images. The first type has no vertebrobasilar dolichoectasia, the second type has vertebrobasilar dolichoectasia and balanced vertebral arteries, and the third type has vertebrobasilar dolichoectasia and unbalanced vertebral arteries. A lumped parameter model of the circle of Willis was established and coupled to these three-dimensional models. FindingsThe results showed that unbalanced bilateral vertebral arteries, especially single vertebral artery deletion mutation, might associate with higher wall shear stress on anterior wall of basilar artery in patients with vertebrobasilar dolichoectasia. And unbalanced bilateral vertebral arteries would increase the blood pressure in basilar artery. Meanwhile, missing communicating arteries in the circle of Willis, especially bilateral posterior communicating arteries absences, would significantly increase blood pressure in basilar artery. The unilateral absence of posterior communicating arteries would increase differences in blood flow between the left and right posterior cerebral arteries. InterpretationThis study provided a multi-scale modeling method and some preliminary results for helping understand the role of hemodynamics in occurrence and development of vertebrobasilar dolichoectasia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.