Abstract
Agricultural production combined with planting and breeding, which can reduce chemical fertilizer and pesticide applications, reduce losses due to natural disasters, and improve the output and quality of agricultural products, is an important way to achieve green, circular and efficient production. To assess effects on soil bacterial community structure, a vegetable-eel-earthworm integrated planting and breeding platform (VEE-IPBP) combined with experiment planting was established at Chongming Island, Shanghai and compared to traditional planting. High-throughput sequencing to reveal soil bacterial community structure was performed on samples collected at 0, 3 and 6 years after implementation of the two models. Over time, the Shannon index first increased and then decreased in the VEE-IPBP system and was reduced by 3.2% compared to the traditional planting (In the same time and space scale, the single-degree planting method of dryland vegetables under mechanical cultivation is adopted) (p < 0.05). In contrast, Chao and Ace indices were increased by 2.4% and 3.2%. Thus, soil bacterial diversity was markedly different in the two planting models. The abundance of Proteus, Cyanophyta and Cyanophyta in soil increased after 6 years, and the proportion of Lysinibacillus increased significantly, contributing to improvement in soil disease resistance. Redundancy analysis (RDA) showed that the soil pH and water content were the main factors influencing the change in soil bacterial community structure in the two planting models, and the dominant species of soil bacteria were Lysobacter and Bacillus.
Highlights
Integrated planting and breeding is a circular eco-agricultural production approach that takes full advantage of ecological principles to achieve reasonable systematic allocation for matter–energy conversion
Mean Shannon index values of 6.08, 6.45, 6.44, 6.54 and 6.23 were obtained for soil samples TPP10, TPP13, TPP16, VEE13 and VEE16, respectively. These results indicate that diversity in the TPP-treated plots increased with time; in contrast, Shannon index values for VEEIPBP-treated soils first increased and decreased
The results obtained in this study showed that compared to TPP, an increase in soil bacterial richness but a decrease in soil bacterial diversity occurred in VEE-integrated planting and breeding platforms (IPBPs)-treated plots
Summary
Integrated planting and breeding is a circular eco-agricultural production approach that takes full advantage of ecological principles to achieve reasonable systematic allocation for matter–energy conversion. Rice-fish symbiotic systems have had the following impacts: increased rice production per unit area by 5–15%, organic fertilizer utilization efficiency, soil microbial populations and activities, and soil respiration; improved rice quality traits and soil physical and chemical properties; reduced chemical fertilizer and pesticide application, pests and diseases, and accumulation of harmful reducing substances. Overall, these changes alter the soil microbial community structure[9,10]. The multi-year effects of VEE-IPBP on soil microbial community structure and diversity were analysed using Illumina high-throughput sequencing technology, with the goal of providing basic parameters for improving VEE-IPBP management and control measures as well as a scientific basis for increasing soil fertility and reasonably and sustainably utilizing cultivated land resources
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.