Abstract

We investigated the predatory effects of Dytiscus alaskanus, a large predaceous diving beetle, on the biomass, species composition and diversity of fishless pond communities. The effects were tested using presence and absence treatments of D. alaskanus in 24 mesocosms distributed among six ponds. We sampled phytoplankton, zooplankton and macroinvertebrates every two weeks for a six week period. Periphyton was sampled from the mesocosm walls on the final day. Total macroinvertebrate biomass decreased in the presence of dytiscids while species richness was not affected. Macroinvertebrate predators, snails and Gammarus lacustris decreased in the dytiscid treatments. Laboratory feeding experiments confirmed feeding preferences consistent with the mesocosm results. Periphyton biomass was six times greater in the dytiscid enclosures, concomitant with the decreased grazing by gastropods and other invertebrate primary consumers indicating a benthic trophic cascade. Top–down effects of dytiscids on other predatory invertebrates led to increased total zooplankton biomass, largely due to increased abundances of large and small cladocerans. Zooplankton species richness increased in the dytiscid enclosures. Inconsistent with trophic cascade theory, phytoplankton did not respond to top–down effects of D. alaskanus within the study period. Overall, the results show D. alaskanus predation caused trophic effects via two distinct food chains, a dytiscid–snail–periphyton trophic cascade, and a dytiscid–predatory macroinvertebrates–zooplankton partial trophic cascade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call