Abstract

The shapes of elution profiles are often significantly influenced by the presence of strongly adsorbed additives in the mobile phase. This aspect needs to be considered in quantitative optimization of preparative chromatography. The theoretical study carried out here is based on available thermodynamic information for the enantiomers of three β-blockers, alprenolol, propranolol, and atenolol, on a teicoplanin chiral stationary phase (Chirobiotic T) using methanol/acetonitrile as the mobile phase and acetic acid/triethylamine as the additive. The properties of this strong additive made it possible to tune the binary elution profiles in any combination of the following apparent band shapes: anti-Langmuir/anti-Langmuir, anti-Langmuir/Langmuir and Langmuir/Langmuir. Optimization of the productivity and yield, when performing repetitive batch injections, was investigated using the equilibrium dispersive model. We show that it is important to consider the invisible additive perturbation peak when defining the cycle time and therefore a model-based optimization needs to take this into account. Furthermore, both productivity and yield could be improved for the two unusual shape combinations in comparison to the traditional Langmuir/Langmuir case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call