Abstract
In recent years, guided implant surgery has been widely used for the convenience of patients and surgeons. Further streamlining the surgical procedure would make implant surgery more convenient. Low-speed water-free conditions are often used in guided implant surgery. Therefore, in this study, we attempted to confirm once again whether drilling was safe at a low speed without water. The main purpose of this study was to evaluate whether a simplified drilling protocol that omits some intermediate steps in the drilling process was safe from the viewpoint of heat generation. D1 density artificial bone blocks were drilled under 50 rpm, 10 N·cm water-free conditions, and the surface temperature was measured using a digital infrared camera. First, drilling was performed with the sequential drilling method, which is the most widely used technique. Second, for each drill diameter, the temperature change was measured while performing simplified drilling with omission of the previous 1, 2, or 3 steps. In sequential drilling, the heat generated during drilling at all diameters was less than the critical temperature of osteonecrosis (47°C) except for the ⌀2 drill. Statistical significance was observed in all groups when comparing sequential and simplified drilling in the ⌀3.2, ⌀3.8, and ⌀4.3 drills (P<0.001). However, in the simplified drilling procedures, the temperature was below the osteonecrosis threshold temperature (47°C) except for the ⌀4.3 drill with the omission of the previous 3 steps (⌀3.0, ⌀3.2, and ⌀3.8). In general, drilling under low-speed, water-free conditions has shown stable results in terms of heat generation. Simplified drilling showed statistically significantly greater heat generation than sequential drilling. However, most of the diameters and omitted steps seem to be clinically acceptable, so it will be useful if an appropriate selection is made according to the patient's clinical condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.