Abstract
Abstract Comprehensive boundary layer measurements from a drift station on first-year ice in the late summer of 2012 in the Nansen basin, when stable stratification in the upper ocean extended all the way to the surface, are analyzed. Observed quadratic ice–ocean drag coefficients, based on measurements of wind stress, are roughly 3.6 × 10−3, consistent with neutral-stability Rossby similarity scaling. The turning angles of 32°–39° between surface velocity and stress are larger than Rossby similarity predicts and obey a different scaling. This can be explained by the shallow pycnocline forcing the Ekman transport into a thin layer and modeled roughly employing a simple first-order correction to Rossby similarity. Turbulent shear stress in the ice–ocean boundary layer is on average 3 times smaller than the estimate based on wind stress, possibly because internal wave drag was significant. This lowers vertical scalar fluxes by 38% compared to a scenario where turbulent stress accounts for the total drag. The authors measure an average upward ocean–ice heat flux of 10 W m−2, which is 50% smaller than predicted by a bulk heat flux parameterization. This reduction is attributed to additional sources of heat and freshwater that alter the ice–ocean interface salt balance. This study shows that a commonly used bulk heat flux parameterization is a special case of a simple downgradient parameterization allowing for a modified interface salt budget. For similar wind forcing, observed ice–ocean fluxes of heat and salt were 40%–100% larger when the ice-relative current approached from a nearby pressure ridge keel than otherwise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.