Abstract

Abstract The aviation kerosene piston engine (AKPE) is the main power system for small- and medium-sized unmanned aerial vehicles (UAVs). Conventional AKPEs use carburetors or port fuel injection (PFI) as fuel supply, resulting in poor cold start performance and difficulty in forming an economically efficient stratified mixture. In addition, two-stroke AKPEs using carburetors or PFI have serious scavenging losses. These reasons lead to the poor economic performance of conventional AKPEs. Direct injection (DI) can be controlled through precise injection timing to form a stratified mixture. The combustion of stratified mixtures in engines can effectively improve the fuel economy and endurance flight time characteristics of UAVs. As a special DI injector, self-pressurized injectors have great potential in the power field of UAVs. To effectively apply self-pressurized injectors on UAV engines and improve the economy, an engine model and a self-pressurized injector spray model are established and verified in this paper. The single injection strategy and segmented injection strategy for forming stratified mixtures are explored, and the combustion performance is studied. The main conclusions are as follows: the optimal installation angle of the injector is 15 deg, which yields excellent results in the formation of the mixture at this angle. When the fuel injection quantity is small, utilizing a single injection strategy combined with delaying the end of the injection phase (EOIP) can form a stratified mixture. Reducing the angle difference between the EOIP and the ignition timing can improve the power and economy. As the fuel injection quantity is large, a stratified mixture can be formed through two-stage injection. When the fuel injection ratio is 4:1, the uniformity of the mixture distribution in the combustion chamber is significantly improved. Adjusting the second EOIP between a 35 deg crank angle (CA) before top dead center (BTDC) and a 30 deg CA BTDC can achieve a stratified mixture with good economy and power performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call